Persistent Entrainment in Non-linear Neural Networks With Memory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRNN: Recurrent Neural Network with Persistent Memory

Although Recurrent Neural Network (RNN) has been a powerful tool for modeling sequential data, its performance is inadequate when processing sequences with multiple patterns. In this paper, we address this challenge by introducing an external memory and constructing a novel persistent memory augmented RNN (term as PRNN) model. The PRNN model captures the principle patterns in training sequences...

متن کامل

Non-linear system identification using neural networks

International Journal of Control Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713393989 Non-linear system identification using neural networks S. Chen a; S. A. Billings b; P. M. Grant a a Department of Electrical Engineering, University of Edinburgh, Edinburgh, Scotland, U.K b Department of Control Engineer...

متن کامل

Non-Linear Modelling and Chaotic Neural Networks

This paper proposes a simple methodology to construct an iterative neural network which mimics a given chaotic time series. The methodology uses the Gamma test to identify a suitable (possibly irregular) embedding of the chaotic time series from which a one step predictive model may be constructed. This model is then iterated to produce a close approximation to the original chaotic dynamics. Ha...

متن کامل

Memory in linear recurrent neural networks in continuous time

Reservoir Computing is a novel technique which employs recurrent neural networks while circumventing difficult training algorithms. A very recent trend in Reservoir Computing is the use of real physical dynamical systems as implementation platforms, rather than the customary digital emulations. Physical systems operate in continuous time, creating a fundamental difference with the classic discr...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Applied Mathematics and Statistics

سال: 2018

ISSN: 2297-4687

DOI: 10.3389/fams.2018.00031